Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Gravitational wave background from sub‐luminous GRBs: prospects for second‐ and third‐generation detectors

Identifieur interne : 006419 ( Main/Exploration ); précédent : 006418; suivant : 006420

Gravitational wave background from sub‐luminous GRBs: prospects for second‐ and third‐generation detectors

Auteurs : E. Howell [Australie] ; T. Regimbau [France] ; A. Corsi [États-Unis] ; D. Coward [Australie] ; R. Burman [Australie]

Source :

RBID : ISTEX:D2AEEFCC04D24FEF052EC513F0444B0769402C9D

Descripteurs français

English descriptors

Abstract

We assess the detection prospects of a gravitational wave background associated with sub‐luminous gamma‐ray bursts (SL‐GRBs). We assume that the central engines of a significant proportion of these bursts are provided by newly born magnetars and consider two plausible GW emission mechanisms. First, the deformation‐induced triaxial GW emission from a newly born magnetar. Secondly, the onset of a secular bar‐mode instability, associated with the long‐lived plateau observed in the X‐ray afterglows of many gamma‐ray bursts. With regards to detectability, we find that the onset of a secular instability is the most optimistic scenario: under the hypothesis that SL‐GRBs associated with secularly unstable magnetars occur at a rate of (48–80) Gpc−3 yr−1 or greater, cross‐correlation of data from two Einstein Telescopes (ETs) could detect the GW background associated to this signal with a signal‐to‐noise ratio of 3 or greater after 1 year of observation. Assuming neutron star spindown results purely from triaxial GW emissions, we find that rates of around (130–350) Gpc−3 yr−1 will be required by ET to detect the resulting GW background. We show that a background signal from secular instabilities could potentially mask a primordial GW background signal in the frequency range where ET is most sensitive. Finally, we show how accounting for cosmic metallicity evolution can increase the predicted signal‐to‐noise ratio for background signals associated with SL‐GRBs.

Url:
DOI: 10.1111/j.1365-2966.2010.17585.x


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Gravitational wave background from sub‐luminous GRBs: prospects for second‐ and third‐generation detectors</title>
<author>
<name sortKey="Howell, E" sort="Howell, E" uniqKey="Howell E" first="E." last="Howell">E. Howell</name>
</author>
<author>
<name sortKey="Regimbau, T" sort="Regimbau, T" uniqKey="Regimbau T" first="T." last="Regimbau">T. Regimbau</name>
</author>
<author>
<name sortKey="Corsi, A" sort="Corsi, A" uniqKey="Corsi A" first="A." last="Corsi">A. Corsi</name>
</author>
<author>
<name sortKey="Coward, D" sort="Coward, D" uniqKey="Coward D" first="D." last="Coward">D. Coward</name>
</author>
<author>
<name sortKey="Burman, R" sort="Burman, R" uniqKey="Burman R" first="R." last="Burman">R. Burman</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:D2AEEFCC04D24FEF052EC513F0444B0769402C9D</idno>
<date when="2011" year="2011">2011</date>
<idno type="doi">10.1111/j.1365-2966.2010.17585.x</idno>
<idno type="url">https://api.istex.fr/document/D2AEEFCC04D24FEF052EC513F0444B0769402C9D/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002735</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002735</idno>
<idno type="wicri:Area/Istex/Curation">002735</idno>
<idno type="wicri:Area/Istex/Checkpoint">000839</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000839</idno>
<idno type="wicri:doubleKey">0035-8711:2011:Howell E:gravitational:wave:background</idno>
<idno type="wicri:Area/Main/Merge">006796</idno>
<idno type="wicri:source">INIST</idno>
<idno type="RBID">Pascal:11-0057999</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">002079</idno>
<idno type="wicri:Area/PascalFrancis/Curation">003E48</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">001A52</idno>
<idno type="wicri:explorRef" wicri:stream="PascalFrancis" wicri:step="Checkpoint">001A52</idno>
<idno type="wicri:doubleKey">0035-8711:2011:Howell E:gravitational:wave:background</idno>
<idno type="wicri:Area/Main/Merge">006F03</idno>
<idno type="wicri:Area/Main/Curation">006419</idno>
<idno type="wicri:Area/Main/Exploration">006419</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Gravitational wave background from sub‐luminous GRBs: prospects for second‐ and third‐generation detectors</title>
<author>
<name sortKey="Howell, E" sort="Howell, E" uniqKey="Howell E" first="E." last="Howell">E. Howell</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Physics, University of Western Australia, Crawley WA 6009</wicri:regionArea>
<wicri:noRegion>Crawley WA 6009</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Regimbau, T" sort="Regimbau, T" uniqKey="Regimbau T" first="T." last="Regimbau">T. Regimbau</name>
<affiliation wicri:level="1">
<country xml:lang="fr">France</country>
<wicri:regionArea>UMR ARTEMIS, CNRS, University of Nice Sophia‐Antipolis, Observatoire de la Côte d'Azur, BP 4229, 06304 Nice, Cedex 4</wicri:regionArea>
<wicri:noRegion>Cedex 4</wicri:noRegion>
<wicri:noRegion>Cedex 4</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Corsi, A" sort="Corsi, A" uniqKey="Corsi A" first="A." last="Corsi">A. Corsi</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>18‐34 LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Coward, D" sort="Coward, D" uniqKey="Coward D" first="D." last="Coward">D. Coward</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Physics, University of Western Australia, Crawley WA 6009</wicri:regionArea>
<wicri:noRegion>Crawley WA 6009</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Burman, R" sort="Burman, R" uniqKey="Burman R" first="R." last="Burman">R. Burman</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Physics, University of Western Australia, Crawley WA 6009</wicri:regionArea>
<wicri:noRegion>Crawley WA 6009</wicri:noRegion>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Monthly Notices of the Royal Astronomical Society</title>
<title level="j" type="alt">MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY</title>
<idno type="ISSN">0035-8711</idno>
<idno type="eISSN">1365-2966</idno>
<imprint>
<biblScope unit="vol">410</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="2123">2123</biblScope>
<biblScope unit="page" to="2136">2136</biblScope>
<biblScope unit="page-count">14</biblScope>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2011-02-01">2011-02-01</date>
</imprint>
<idno type="ISSN">0035-8711</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0035-8711</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Accretion disc</term>
<term>Afterglow</term>
<term>Aligo</term>
<term>Aligo sensitivity curve</term>
<term>Allen romano</term>
<term>Background signal</term>
<term>Background signals</term>
<term>Background spectra</term>
<term>Background spectrum</term>
<term>Black hole</term>
<term>Bonazzola gourgoulhon</term>
<term>California institute</term>
<term>Central engines</term>
<term>Conservative rate</term>
<term>Continuous contribution</term>
<term>Continuous signal</term>
<term>Corsi</term>
<term>Cosmic expansion</term>
<term>Cosmic gamma sources</term>
<term>Cosmic metallicity evolution</term>
<term>Cosmic metallicity evolution increases</term>
<term>Cosmology</term>
<term>Coward burman</term>
<term>Coward regimbau</term>
<term>Cross correlations</term>
<term>Crystalline quark matter</term>
<term>Dallosso</term>
<term>Dallosso stella</term>
<term>Decadal survey</term>
<term>Deformation</term>
<term>Degw</term>
<term>Design sensitivity curves</term>
<term>Detectability</term>
<term>Detectable signal</term>
<term>Detection prospects</term>
<term>Detector</term>
<term>Differential event rate</term>
<term>Duncan thompson</term>
<term>Duty cycle</term>
<term>Dynamical instability</term>
<term>Elastic deformations</term>
<term>Eld</term>
<term>Ellipticity</term>
<term>Emission mechanism</term>
<term>Emission mechanisms</term>
<term>Energy density</term>
<term>Energy spectrum</term>
<term>Event rate</term>
<term>Event rates</term>
<term>Freitas</term>
<term>Freitas pacheco</term>
<term>Frequency range</term>
<term>Friedman schutz</term>
<term>Gamma ray burst</term>
<term>Gravitational radiation</term>
<term>Gravitational wave background</term>
<term>Gravitational waves</term>
<term>Grbs</term>
<term>Greater contribution</term>
<term>Growth time</term>
<term>Guetta</term>
<term>Guetta della valle</term>
<term>High power laser</term>
<term>Hopkins beacom</term>
<term>Howell</term>
<term>Hubble parameter</term>
<term>Individual components</term>
<term>Individual events</term>
<term>Instability</term>
<term>Integration time</term>
<term>Interferometric detectors</term>
<term>Internal toroidal</term>
<term>Journal compilation</term>
<term>Langer norman</term>
<term>Lgrbs</term>
<term>Liang</term>
<term>Liang zhang</term>
<term>Light curve</term>
<term>Ligo</term>
<term>Local rate</term>
<term>Local rate density</term>
<term>Long duration</term>
<term>Long grbs</term>
<term>Lower frequency</term>
<term>Luminosity distance</term>
<term>Luminosity evolution</term>
<term>Magnetar</term>
<term>Magnetar population</term>
<term>Magnetars</term>
<term>Magnetic torque</term>
<term>Mandic</term>
<term>Massive stars</term>
<term>Matarrese schneider</term>
<term>Metallicity</term>
<term>Metallicity dependence</term>
<term>Metallicity evolution</term>
<term>Mnras</term>
<term>Neutron stars</term>
<term>Next section</term>
<term>Optimally orientated</term>
<term>Other studies</term>
<term>Overlap reduction functions</term>
<term>Pacheco</term>
<term>Parameter space</term>
<term>Parameter values</term>
<term>Phys</term>
<term>Place constraints</term>
<term>Plateau</term>
<term>Plausible rate</term>
<term>Poisson statistics</term>
<term>Poloidal</term>
<term>Popcorn</term>
<term>Popcorn type</term>
<term>Preprint</term>
<term>Primordial</term>
<term>Progenitor star</term>
<term>Rapid rotation</term>
<term>Rate aligo</term>
<term>Rate density</term>
<term>Rate estimates</term>
<term>Redshift</term>
<term>Redshift range</term>
<term>Regimbau</term>
<term>Regimbau hughes</term>
<term>Regimbau mandic</term>
<term>Rotation period</term>
<term>Rotational</term>
<term>Rotational energy</term>
<term>Rotational periods</term>
<term>Saturation regime</term>
<term>Scenario</term>
<term>Secular evolution</term>
<term>Secular instabilities</term>
<term>Secular instability</term>
<term>Secularly</term>
<term>Sensitive frequency regime</term>
<term>Sensitivity curves</term>
<term>Shallow decay phase</term>
<term>Shapiro</term>
<term>Shibata</term>
<term>Shibata karino</term>
<term>Shot noise</term>
<term>Signal-to-noise ratio</term>
<term>Single detections</term>
<term>Small part</term>
<term>Soderberg</term>
<term>Source rate evolution</term>
<term>Source rates</term>
<term>Spectral energy density</term>
<term>Spindown</term>
<term>Statistical arguments</term>
<term>Stella</term>
<term>Stellar activity</term>
<term>Stochastic background signal</term>
<term>Superconducting core</term>
<term>Supernova remnants</term>
<term>Supernovae</term>
<term>Swift data</term>
<term>Swift distribution</term>
<term>Thick curves</term>
<term>Thick lines</term>
<term>Thin lines</term>
<term>Time dilation</term>
<term>Toroidal</term>
<term>Transient populations</term>
<term>Triaxial</term>
<term>Triaxial deformations</term>
<term>Typical case</term>
<term>Typical duration</term>
<term>Unique population</term>
<term>Upper limit</term>
<term>Upper limits</term>
<term>Upper rate</term>
<term>Virgo collaboration</term>
<term>Woosley</term>
<term>Woosley heger</term>
<term>Woosley janka</term>
<term>Zhang</term>
<term>Zlim</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Corrélation croisée</term>
<term>Cosmologie</term>
<term>Déformation</term>
<term>Détectabilité</term>
<term>Etoile neutron</term>
<term>Instabilité séculaire</term>
<term>Métallicité</term>
<term>Onde gravitationnelle</term>
<term>Postluminescence</term>
<term>Rapport signal bruit</term>
<term>Source gamma cosmique</term>
<term>Supernova</term>
<term>Sursaut Rγ</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Accretion disc</term>
<term>Aligo</term>
<term>Aligo sensitivity curve</term>
<term>Allen romano</term>
<term>Background signal</term>
<term>Background signals</term>
<term>Background spectra</term>
<term>Background spectrum</term>
<term>Black hole</term>
<term>Bonazzola gourgoulhon</term>
<term>California institute</term>
<term>Central engines</term>
<term>Conservative rate</term>
<term>Continuous contribution</term>
<term>Continuous signal</term>
<term>Corsi</term>
<term>Cosmic expansion</term>
<term>Cosmic metallicity evolution</term>
<term>Cosmic metallicity evolution increases</term>
<term>Coward burman</term>
<term>Coward regimbau</term>
<term>Crystalline quark matter</term>
<term>Dallosso</term>
<term>Dallosso stella</term>
<term>Decadal survey</term>
<term>Degw</term>
<term>Design sensitivity curves</term>
<term>Detectable signal</term>
<term>Detection prospects</term>
<term>Detector</term>
<term>Differential event rate</term>
<term>Duncan thompson</term>
<term>Duty cycle</term>
<term>Dynamical instability</term>
<term>Elastic deformations</term>
<term>Eld</term>
<term>Ellipticity</term>
<term>Emission mechanism</term>
<term>Emission mechanisms</term>
<term>Energy density</term>
<term>Energy spectrum</term>
<term>Event rate</term>
<term>Event rates</term>
<term>Freitas</term>
<term>Freitas pacheco</term>
<term>Frequency range</term>
<term>Friedman schutz</term>
<term>Gravitational radiation</term>
<term>Gravitational wave background</term>
<term>Grbs</term>
<term>Greater contribution</term>
<term>Growth time</term>
<term>Guetta</term>
<term>Guetta della valle</term>
<term>High power laser</term>
<term>Hopkins beacom</term>
<term>Howell</term>
<term>Hubble parameter</term>
<term>Individual components</term>
<term>Individual events</term>
<term>Instability</term>
<term>Integration time</term>
<term>Interferometric detectors</term>
<term>Internal toroidal</term>
<term>Journal compilation</term>
<term>Langer norman</term>
<term>Lgrbs</term>
<term>Liang</term>
<term>Liang zhang</term>
<term>Light curve</term>
<term>Ligo</term>
<term>Local rate</term>
<term>Local rate density</term>
<term>Long duration</term>
<term>Long grbs</term>
<term>Lower frequency</term>
<term>Luminosity distance</term>
<term>Luminosity evolution</term>
<term>Magnetar</term>
<term>Magnetar population</term>
<term>Magnetars</term>
<term>Magnetic torque</term>
<term>Mandic</term>
<term>Massive stars</term>
<term>Matarrese schneider</term>
<term>Metallicity</term>
<term>Metallicity dependence</term>
<term>Metallicity evolution</term>
<term>Mnras</term>
<term>Next section</term>
<term>Optimally orientated</term>
<term>Other studies</term>
<term>Overlap reduction functions</term>
<term>Pacheco</term>
<term>Parameter space</term>
<term>Parameter values</term>
<term>Phys</term>
<term>Place constraints</term>
<term>Plateau</term>
<term>Plausible rate</term>
<term>Poisson statistics</term>
<term>Poloidal</term>
<term>Popcorn</term>
<term>Popcorn type</term>
<term>Preprint</term>
<term>Primordial</term>
<term>Progenitor star</term>
<term>Rapid rotation</term>
<term>Rate aligo</term>
<term>Rate density</term>
<term>Rate estimates</term>
<term>Redshift</term>
<term>Redshift range</term>
<term>Regimbau</term>
<term>Regimbau hughes</term>
<term>Regimbau mandic</term>
<term>Rotation period</term>
<term>Rotational</term>
<term>Rotational energy</term>
<term>Rotational periods</term>
<term>Saturation regime</term>
<term>Scenario</term>
<term>Secular evolution</term>
<term>Secular instabilities</term>
<term>Secular instability</term>
<term>Secularly</term>
<term>Sensitive frequency regime</term>
<term>Sensitivity curves</term>
<term>Shallow decay phase</term>
<term>Shapiro</term>
<term>Shibata</term>
<term>Shibata karino</term>
<term>Shot noise</term>
<term>Single detections</term>
<term>Small part</term>
<term>Soderberg</term>
<term>Source rate evolution</term>
<term>Source rates</term>
<term>Spectral energy density</term>
<term>Spindown</term>
<term>Statistical arguments</term>
<term>Stella</term>
<term>Stellar activity</term>
<term>Stochastic background signal</term>
<term>Superconducting core</term>
<term>Supernova remnants</term>
<term>Swift data</term>
<term>Swift distribution</term>
<term>Thick curves</term>
<term>Thick lines</term>
<term>Thin lines</term>
<term>Time dilation</term>
<term>Toroidal</term>
<term>Transient populations</term>
<term>Triaxial</term>
<term>Triaxial deformations</term>
<term>Typical case</term>
<term>Typical duration</term>
<term>Unique population</term>
<term>Upper limit</term>
<term>Upper limits</term>
<term>Upper rate</term>
<term>Virgo collaboration</term>
<term>Woosley</term>
<term>Woosley heger</term>
<term>Woosley janka</term>
<term>Zhang</term>
<term>Zlim</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Cosmologie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We assess the detection prospects of a gravitational wave background associated with sub‐luminous gamma‐ray bursts (SL‐GRBs). We assume that the central engines of a significant proportion of these bursts are provided by newly born magnetars and consider two plausible GW emission mechanisms. First, the deformation‐induced triaxial GW emission from a newly born magnetar. Secondly, the onset of a secular bar‐mode instability, associated with the long‐lived plateau observed in the X‐ray afterglows of many gamma‐ray bursts. With regards to detectability, we find that the onset of a secular instability is the most optimistic scenario: under the hypothesis that SL‐GRBs associated with secularly unstable magnetars occur at a rate of (48–80) Gpc−3 yr−1 or greater, cross‐correlation of data from two Einstein Telescopes (ETs) could detect the GW background associated to this signal with a signal‐to‐noise ratio of 3 or greater after 1 year of observation. Assuming neutron star spindown results purely from triaxial GW emissions, we find that rates of around (130–350) Gpc−3 yr−1 will be required by ET to detect the resulting GW background. We show that a background signal from secular instabilities could potentially mask a primordial GW background signal in the frequency range where ET is most sensitive. Finally, we show how accounting for cosmic metallicity evolution can increase the predicted signal‐to‐noise ratio for background signals associated with SL‐GRBs.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>France</li>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<country name="Australie">
<noRegion>
<name sortKey="Howell, E" sort="Howell, E" uniqKey="Howell E" first="E." last="Howell">E. Howell</name>
</noRegion>
<name sortKey="Burman, R" sort="Burman, R" uniqKey="Burman R" first="R." last="Burman">R. Burman</name>
<name sortKey="Coward, D" sort="Coward, D" uniqKey="Coward D" first="D." last="Coward">D. Coward</name>
<name sortKey="Howell, E" sort="Howell, E" uniqKey="Howell E" first="E." last="Howell">E. Howell</name>
</country>
<country name="France">
<noRegion>
<name sortKey="Regimbau, T" sort="Regimbau, T" uniqKey="Regimbau T" first="T." last="Regimbau">T. Regimbau</name>
</noRegion>
</country>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Corsi, A" sort="Corsi, A" uniqKey="Corsi A" first="A." last="Corsi">A. Corsi</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 006419 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 006419 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:D2AEEFCC04D24FEF052EC513F0444B0769402C9D
   |texte=   Gravitational wave background from sub‐luminous GRBs: prospects for second‐ and third‐generation detectors
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024